samielove6677 samielove6677
  • 21-11-2017
  • Mathematics
contestada

Prove that for any positive integer n a field f can have at most a finite number of elements of multiplicative order at most n

Respuesta :

nobillionaireNobley
nobillionaireNobley nobillionaireNobley
  • 02-12-2017
Let's assume multiplicative order is infinite. Then [tex]x^k=1, \forall k=1(1)n[/tex]. In the field [tex]F[/tex] the solution of the polynomial [tex]x^k-1=0[/tex] can have at most [tex]k[/tex] distinct solutions. Hence for any [tex]k=1(1)n[/tex] we cannot have infinite roots. And thus the result follows.
Answer Link

Otras preguntas

What is the area of these shapes
Why was there no concern about Moslems and Hindus having the right to worship when the Act of Tole tion was in effect
How does Josh feel about Alexis now? Why? crossover
Find the area of the following square. 4x - 1
Can someone help me with this pls there is the picture
True or False: Charles Wallace suggests that Calvin and Meg turn to IT if they are in the need of a father. True False
Read the paragraph. An engineer named Elijah McCoy invented the "oiling cup" which kept trains and steamboats oiled when they were moving. The use of the oiling
How many total carbonate ions would be present in the formula for aluminum carbonate? Select one: a. 3 b. 2 c. 1 d. 4
NO LINKS: Which of the following best demonstrates Newton's Third Law? Gravity is a force pulling down on you. The ahrder you hit a volleyball the faster it wil
Select the correct answer which statement is true about the role of women during the Civil War. A: woman not only treated injured soldiers but also ran farms in