Respuesta :
The statement that correctly describes the horizontal asymptote of g(x) is:
Limit of g (x) as x approaches plus-or-minus infinity = 6, so g(x) has an asymptote at y = 6.
What are the asymptotes of a function f(x)?
- The vertical asymptotes are the values of x which are outside the domain, which in a fraction are the zeroes of the denominator.
- The horizontal asymptote is the limit of f(x) as x goes to infinity, as long as this value is different of infinity.
In this problem, the function is:
[tex]g(x) = \frac{42x^3 - 15}{7x^3 - 4x^2 - 3}[/tex]
The horizontal asymptote is given as follows:
[tex]y = \lim_{x \rightarrow \infty} g(x) = \lim_{x \rightarrow \infty} \frac{42x^3 - 15}{7x^3 - 4x^2 - 3} = \lim_{x \rightarrow \infty} \frac{42x^3}{7x^3} = \lim_{x \rightarrow \infty} 6 = 6[/tex]
Hence the correct statement is:
Limit of g (x) as x approaches plus-or-minus infinity = 6, so g(x) has an asymptote at y = 6.
More can be learned about asymptotes at https://brainly.com/question/16948935
#SPJ1